The temporal separation of gender in flowering plants: An evolutionary analysis

Matthew B. Routley

Inbreeding avoidance

Dichogamy

Protandry

B. Husband

Protogyny

B. Husband

Evaluating inbreeding avoidance

- Survey by Bertin 1993
 - 73% 160 SI species
 - 75% 673 SC species
 - 34% protogynous
- Seen as evidence against inbreeding avoidance

Interference avoidance

Interference avoidance

Functional Analysis: Ultimate

Functional significance

- Interference avoidance predicts:
 - I. Protandry reduces interference
 - 2. Interference increases with inflorescence size
 - 3. Protandry enhances pollen export in large inflorescences
- Enhancement of male reproductive success provides selective advantage of protandry

Chamerion angustifolium

- 10-15 open flowers
- protandrous
- male phase ~2 days
- 45% ovules selfed
- $\delta = 0.945$

B. Husband

• Array of 16 plants with 2, 6, or 10 flowers/plant

Female outcrossing rate

Treatment	t
Dichogamy	
protandrous	1.14 ± 0.40
adichogamous	0.92 ± 0.13
Inflorescence size	
two-flowered	0.84 ± 0.39
six-flowered	1.99 ± 0.07
10-flowered	0.90 ± 0.25
Position	
top	0.84 ± 0.13
bottom	0.95 ± 0.10

Functional Analysis: Proximate

B. Husband

Pollen dynamics

- Hermaphrodite
- Female
- Male

Experimental design

P<0.01 P<0.05

P>0.85 P>0.20

Genetic analysis

Evolution of malephase duration

- Influences of pollinator visitation & pollen removal
- Strong influence on male reproductive success
- Response to selection:
 - Heritability
 - Character correlations
 - Trade-offs

Genetic architecture

Male duration	Female duration	Floral width	Floral separation	Display length	Display size
0.23±0.04	-0.17±0.14	-0.13±0.12	0.49±0.22	0.68±0.12	0.22±0.32
	0.17±0.04	0.04±0.11	-0.26±0.22	-0.18±0.15	0.38±0.29
		0.19±0.04	0.26±0.21	0.47±0.16	-0.13±0.10
			0.07±0.03	0.89±0.13	0.68±0.24
				0.18±0.04	0.46±0.23
					0.39±0.18

Artificial selection

Response to selection

Male-phase duration	30 - 25 -	a	ab			
	20 -	Short	Control	Long		
			Selection line			
				Source	F ratio	Р
				Generation	22.39	<0.0001
				Cross	10.35	<0.0001
				Replicate	0.70	>0.40

Response to selection

Correlated characters

Source	F ratio	df	Ρ
Floral width	0.71	2, 45	>0.45
Floral separation	0.02	2, 45	>0.95
Inflorescence length	0.73	2, 44	>0.45
Display size	1.31	2,51	>0.25

Character evolution

Phylogenetic analysis

Considering phylogeny, are dichogamy and self-incompatibility correlated?

- Protogyny reduces inbreeding
 - ✦ associated with SC
- Protandry reduces interference

Associated with SI

Phylogenetic methods

- Expanded Bertin's database:
 - 5,641 species244 families
- Protandry index
- SI index
- Soltis et al. 2000 phylogeny

Correlated evolution

- Protandry
- o Protogyny

к = 0.20

Acknowledgements

People

Funding

Brian Husband

Judy Canne-Hiliker

John Klironomos

Tom de Jong

Amanda Bauman

Chris Hussel

Paul Kron

Sara Miller

Chris Caruso

Beren Robinson

Robert Bertin

Roxanne Beavers

Marney Issac

Charles Leduc

Sean Spender

Husband Lab

Department of Botany

